Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modeling of the impact of Se-vacancies on the electrical properties of Cu(In,Ga)Se2 films and junctions

Identifieur interne : 000884 ( Main/Repository ); précédent : 000883; suivant : 000885

Modeling of the impact of Se-vacancies on the electrical properties of Cu(In,Ga)Se2 films and junctions

Auteurs : RBID : Pascal:13-0229285

Descripteurs français

English descriptors

Abstract

In this contribution we aim at a better understanding the influence of metastable VSe defects on electrical characteristics of Cu(In,Ga)Se2-based solar cells. In order to achieve this goal we calculate the distribution of VSe charge states by solving numerically the equations involving transition rates between the metastable donor and acceptor configuration. By varying systematically the set of three parameters in a broad range (net shallow acceptor doping level, VSe defect density and temperature) we analyze quantitatively in which conditions and how the metastable defects influence/control the Fermi level position and hence the free carrier concentration. Using these results, we calculate time constants for conversion processes between donor and acceptor configurations. In the second part of the paper we model the influence of VSe-related defects on capacitance-voltage (CV) space charge profiles in different metastable states (reverse bias and light soaking). We propose a method allowing the evaluation of the lower bound for the metastable VSe defect concentration from CV profiles.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0229285

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Modeling of the impact of Se-vacancies on the electrical properties of Cu(In,Ga)Se
<sub>2</sub>
films and junctions</title>
<author>
<name sortKey="Maciaszek, M" uniqKey="Maciaszek M">M. Maciaszek</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Faculty of Physics, Warsaw University of Technology, Koszykowa 75</s1>
<s2>00-662 Warsaw</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
<wicri:noRegion>00-662 Warsaw</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zabierowski, P" uniqKey="Zabierowski P">P. Zabierowski</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Faculty of Physics, Warsaw University of Technology, Koszykowa 75</s1>
<s2>00-662 Warsaw</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
<wicri:noRegion>00-662 Warsaw</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Decock, K" uniqKey="Decock K">K. Decock</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Electronics and Information Systems (ELIS), University of Gent, St-Pietersnieuwstraat 41</s1>
<s2>9000 Gent</s2>
<s3>BEL</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Belgique</country>
<wicri:noRegion>9000 Gent</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0229285</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0229285 INIST</idno>
<idno type="RBID">Pascal:13-0229285</idno>
<idno type="wicri:Area/Main/Corpus">000A96</idno>
<idno type="wicri:Area/Main/Repository">000884</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>CV characteristic</term>
<term>Carrier density</term>
<term>Concentration distribution</term>
<term>Copper</term>
<term>Copper selenides</term>
<term>Defect density</term>
<term>Defect level</term>
<term>Depth profiles</term>
<term>Doping</term>
<term>Electrical characteristic</term>
<term>Electrical properties</term>
<term>Electronic structure</term>
<term>Fermi level</term>
<term>Free carrier</term>
<term>Gallium</term>
<term>Gallium selenides</term>
<term>Indium selenides</term>
<term>Metastable states</term>
<term>Modelling</term>
<term>Shallow level</term>
<term>Solar cells</term>
<term>Space charge</term>
<term>Theoretical study</term>
<term>Thin films</term>
<term>Vacancies</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Modélisation</term>
<term>Etude théorique</term>
<term>Lacune</term>
<term>Propriété électrique</term>
<term>Couche mince</term>
<term>Etat métastable</term>
<term>Caractéristique électrique</term>
<term>Cellule solaire</term>
<term>Niveau peu profond</term>
<term>Dopage</term>
<term>Niveau défaut</term>
<term>Densité défaut</term>
<term>Niveau Fermi</term>
<term>Structure électronique</term>
<term>Cuivre</term>
<term>Gallium</term>
<term>Séléniure de cuivre</term>
<term>Séléniure de gallium</term>
<term>Séléniure d'indium</term>
<term>Porteur libre</term>
<term>Densité porteur charge</term>
<term>Caractéristique capacité tension</term>
<term>Charge espace</term>
<term>Distribution concentration</term>
<term>Profil profondeur</term>
<term>7350</term>
<term>8460J</term>
<term>6855L</term>
<term>7320</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
<term>Cuivre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this contribution we aim at a better understanding the influence of metastable V
<sub>Se</sub>
defects on electrical characteristics of Cu(In,Ga)Se
<sub>2</sub>
-based solar cells. In order to achieve this goal we calculate the distribution of V
<sub>Se</sub>
charge states by solving numerically the equations involving transition rates between the metastable donor and acceptor configuration. By varying systematically the set of three parameters in a broad range (net shallow acceptor doping level, V
<sub>Se</sub>
defect density and temperature) we analyze quantitatively in which conditions and how the metastable defects influence/control the Fermi level position and hence the free carrier concentration. Using these results, we calculate time constants for conversion processes between donor and acceptor configurations. In the second part of the paper we model the influence of V
<sub>Se</sub>
-related defects on capacitance-voltage (CV) space charge profiles in different metastable states (reverse bias and light soaking). We propose a method allowing the evaluation of the lower bound for the metastable V
<sub>Se</sub>
defect concentration from CV profiles.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>535</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Modeling of the impact of Se-vacancies on the electrical properties of Cu(In,Ga)Se
<sub>2</sub>
films and junctions</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>E-MRS 2012 Symposium B</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>MACIASZEK (M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ZABIEROWSKI (P.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>DECOCK (K.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>EDOFF (Marika)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>ROMEO (Alessandro)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>SCHEER (Roland)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>SHAFARMAN (William)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="05" i2="1">
<s1>KATAGIRI (Hirono)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Faculty of Physics, Warsaw University of Technology, Koszykowa 75</s1>
<s2>00-662 Warsaw</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Electronics and Information Systems (ELIS), University of Gent, St-Pietersnieuwstraat 41</s1>
<s2>9000 Gent</s2>
<s3>BEL</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>European Materials Research Society (E-MRS)</s1>
<s2>Strasbourg</s2>
<s3>FRA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s1>371-375</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000504170550820</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>6 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0229285</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this contribution we aim at a better understanding the influence of metastable V
<sub>Se</sub>
defects on electrical characteristics of Cu(In,Ga)Se
<sub>2</sub>
-based solar cells. In order to achieve this goal we calculate the distribution of V
<sub>Se</sub>
charge states by solving numerically the equations involving transition rates between the metastable donor and acceptor configuration. By varying systematically the set of three parameters in a broad range (net shallow acceptor doping level, V
<sub>Se</sub>
defect density and temperature) we analyze quantitatively in which conditions and how the metastable defects influence/control the Fermi level position and hence the free carrier concentration. Using these results, we calculate time constants for conversion processes between donor and acceptor configurations. In the second part of the paper we model the influence of V
<sub>Se</sub>
-related defects on capacitance-voltage (CV) space charge profiles in different metastable states (reverse bias and light soaking). We propose a method allowing the evaluation of the lower bound for the metastable V
<sub>Se</sub>
defect concentration from CV profiles.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70C50</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60H55L</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70C20A</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Modélisation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Modelling</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Etude théorique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Theoretical study</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Lacune</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Vacancies</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Propriété électrique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Electrical properties</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Etat métastable</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Metastable states</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Caractéristique électrique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Electrical characteristic</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Característica eléctrica</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Cellule solaire</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Solar cells</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Niveau peu profond</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Shallow level</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Nivel poco profundo</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Doping</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Doping</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Niveau défaut</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Defect level</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Densité défaut</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Defect density</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Densidad defecto</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Niveau Fermi</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Fermi level</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Structure électronique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Electronic structure</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Cuivre</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Copper</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Gallium</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Gallium</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Séléniure de cuivre</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Copper selenides</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Séléniure de gallium</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Gallium selenides</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Séléniure d'indium</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Indium selenides</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Porteur libre</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Free carrier</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Portador libre</s0>
<s5>29</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Densité porteur charge</s0>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Carrier density</s0>
<s5>30</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Caractéristique capacité tension</s0>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>CV characteristic</s0>
<s5>31</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Charge espace</s0>
<s5>32</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Space charge</s0>
<s5>32</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Distribution concentration</s0>
<s5>33</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Concentration distribution</s0>
<s5>33</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Distribución concentración</s0>
<s5>33</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Profil profondeur</s0>
<s5>34</s5>
</fC03>
<fC03 i1="25" i2="3" l="ENG">
<s0>Depth profiles</s0>
<s5>34</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>7350</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>8460J</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>6855L</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>7320</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>210</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>E-MRS Spring Meeting 2012. Symposium B "Thin Film Chalcogenide Photovoltaic Materials"</s1>
<s3>Strasbourg FRA</s3>
<s4>2012-05-14</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000884 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000884 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0229285
   |texte=   Modeling of the impact of Se-vacancies on the electrical properties of Cu(In,Ga)Se2 films and junctions
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024